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Summary; Let {Xi, i > 0} be a sequence of independent identically distributed

random variables with finite absolute third moment, Then Darling and Erdos

have shown that
lnsn - n 41 ¢ t
Lt P(u < X + ——m——+ =) = exp(-e™")
Subdiga om 2%, Xn
k
——;i—-i=° i R (2 tnfn n)%. Th 1
for -» < t < » where y_ = max an = nn n) °. e result is
0<k<n k Xn

extended to dependent sequences but assuming that {X;} is a standard stationary

Gaussian sequence with covariance function {ri}. When {xi} is moderately

dependent (e.g. when v( | X)) ~ n® 0 <a<2) we get
i= H
Zn(—gg f£ngn n)
1 1 211 t -t
2t P(p_ < + (= -3 + —) = exp(-e ")
T Xt "2 Xn Xn

where Ha is a constant. In the strongly dependent case (e.g. when

v(22=1 Xi) N nzr(n)) we get

zns l/rn - 2n 41 ¢

) = exp(-e” %)
X1/rn x1/rn

2t P(u, < xl/rn $

N>

for -o < t < o,




1. INTRODUCTION: Let'{xi, i > 0} be a sequence of independent identically

distributed random variables with mean zero and variance one. Many classical
problems have come out of the study of the partial sums Sk = E:Bl Xj+ The
celebrated law of the iterated logarithms (LIL) gives the first order terms in

the growth of Sk' It states

S

A k
(1.1) lim e I =1 a.s.
k+o  (2k&nfn k)

Sometimes the LIL is stated in the following Feller form, giving information

about the second order terms. For ¢(n) positive and nondecreasing

0
P(Sk > k;5 ¢(k) i.0,) = or according as
1

(1.2)

[+ -] <o
Z’%exp(-%d:z(n)) or .

The quantity Sk/k!i in both (1.1) and (1.2) can very easily be replaced by

max S./ik . In this paper we will be interested in the behavior of this
1<i<k
maximum. Besides the fixed growth rate given so precisely by (1.2), the

randomness of max S./k% is also of interest. Darling and Erdos[3] prove that
1<i<k
if {xi} has finite absolute third moment then

S 2n(&n,n/4M
(1.3) 1t max k 3 2 t % -t
P < (2 fn,n)* + + }= exp(-e )
o Plidken oy 2 2(24nn)? (Zznzn)!’

for all - < t < ©», As usual gnqn = qth iterated logarithm of n.
The invariance principle of Erdos and Kac offers an elegant tool to prove
these results. The required results are first proved in the special case when

X, are normally distributed. The Central Limit Theorem lets us approximate

i




partial sums Sk/k by normal variables. The results then follow by essentially

concluding that this approximation is, in fact, very good. Thus the study of
the partial sums from the stationary Gaussian sequences is more significant
than any other particular case in this area.

From now on, let {Xi} be assumed to be Gaussian. It is interesting to see
how (1.2) and (1.3) are affected when the assumption of independence among Xi

is relaxed. Theorem 4 of Lai and Stout [5] states the following.

Theorem (Lai and Stout).

and positive sequence {L(n)} satisfying the following conditions

(1) n%L(n) << v(n) << n%L(n) as n + =, v(n) = variance(22=1 ).

1
v(n+m) 1
v(n)

B 3 max L{)
(iii) 1im sup {n(lnf,n n)-B <j<n L) } < o

(ii)

< MB)Y if 6n > m > M.
= n o

n-oo
(1.4) and
lim dnf { M2 o —(l)-"(') >0

n_m{n(f.nznn) <js<n L }

(iv) V p > 0 there exists m and 1 > Ap > 0 such that if Apn >m z_mp then

p

m. L(n) n. P
& ST -

Let ¢(t) be a positive nondecreasing function on [1,o). Then

0
P(Sn > (v(n))&¢(n) i.0.) = or according as
1
(1.5)
2/a-1 2 <o

In Sections 2 and 3 we extend (1.3) in the cases of moderately and strongly

%

dependent stationary Gaussian sequences. We prove that if W= WX Si/(v(i))
0<i<n

Suppose there exists 0 < a < 2, v > a/2, M>1,6>0, B>0

st diuicca s




and

(1.6) v(n) v naL(n) as n > @

with some additional conditions on the slowly varying function L(n) to make it
well behaved then

(1.7) 2t fn(c 2n,n)

n->co

P < (2m,m)7 e (1.2 s —21) = exp(-e™)

(Zlnzn)% (ZZné;;%

for all -o» < x < o, Also if

(1.8) vin) & (1 + oc(( 1 )9)) n?r(n)
&n n

for some 6 > 0 again with some additional conditions on r(n) then

&n, 1/r_- 2n4l
(1.9) 2t P(un f_(22n2 1/rn)!i + L i + 2 1 ) + exp(-e'x)

408 (28n, 1/rn)!i (2tn, 1/r)

for all -= < x < =,

The proofs as in [3], compare the maximum W, to that of a suitably chosen

A

stationary Gaussian process on an appropriate set. The sketch of the main idea

is as follows. We know that even though {Sk/(v(k))k} forms a standard Gaussian :

sequence, its no longer stationary. However, we could view this as coming from

a stationary process being sampled with increasing frequency. If v(k) » k*L(k),

0 < o < 2, then sample from an a-process (i.e., the correlation function near
e |

the origin is v 1 - %|t|“) at points 1, 1 +'%, 1+ 5 3 e Z?=1 Wxy s

Thus we have n observations for this a-process in the interval about [0,%n n].

e s

The maximum of these n observations closely approximates M In this, what we




call a "moderately dependent case', the frequency of sampling does not depend

on the covariance function of {Xi}.

It is interesting to note that the above procedure fails when o = 2. 0ddly
enough, we observe that in this case, the normalized sums process can be approx-
imated by a Brownian motion with transformed time axis. If we have to carry
the above analogy in this case as well, then we have to sample an o = 1 process
at a frequency that depends on the covariance function of the X-process. At
any point k, instead of placing the next observation at a distance 1/k from the
kth observation, we place it at a distance approximately |r'(k)/r(k)|. We will
call this the '"strongly dependent' case. Thus, in this case, My approximates
the maximum of a a = 1 process on the set [0, %&n l/rn]. This allows arbitrarily
slow growth rates of My by choice of T Though not surprising, it is inter-
esting to note that in all cases, only the double exponential is obtained as
the extreme value distribution.

There may seem a discripancy between (1.5) and (1.9). According to (1.5),
if v(k) = kzL(k) satisfying (1.4), then the first order term for N is
(2 ann)li while as (1.9) places it at a much smaller number viz (2 lnz 1/rn)%.
None of the covariances looked at in (1.8) satisfy (1.4). In fact, we could
not find any examples of covariance functions satisfying (1.4) for o = 2.

The next two sections give exact statements and the proofs of the moderately
and the strongly dependent cases respectively. Examples of covariance functions

satisfying the given conditions and some comments are in Section 4.

2. MODERATELY DEPENDENT SEQUENCES: Throughout the remaining, {xi, i >0} will

be a stationary Gaussian sequence with mean zero, variance one and

= ; k . 2 =%k
r, =EXX,. Let v(k) = variance of Zi:O X;3 Yy = (v(K)) Zi=0 Xy for

0

k =0,1,2,... and Y Ogizp Yk.




Theorem 2.1: Suppose that for sufficiently large k,

(2.1) . r, = L >0,

-1 < 6§ <1 and L(k) is a slowly varying function satisfying

(2) for sufficiently large £, %—E%— is bounded if k > Ee, 6 > 0 and

(2.2)  (ii) if £ >k, k » = such that (2-k)/k!™ > @ v y > 0 but £K 5 ¢

k
for 0 < ¢ < = then
gt &2 L(R) - LR - k) &8
k»o k L(2 - k) L
Then for a = 6§ + 1,
1t X 2 -X
(2.3) e DO S B ;;) = exp(-e 7)
for all -» < x < ® , We write
5y (1/a - 1/2)%n.n + zncna//TrT)
Xp = (28n,n)=* 5 B =X + X
and
H = &t % f: euP( max Z(t) > u)du
% T 0<t<T
where Z(t) is a separable nonstationary Gaussian process with E g(t) = -|t|°'

and Cov(Z(s), z(t)) = |s|% [t]* - |s-t|%.
Before we proceed to prove (2.3), we will state and prove two lemmas about

E kaz which will simplify the proof of the Theorem.




T

Lemma 2.1: For [exp(em)] < k < 2 < [exp(e(m+1))], € > 0 and m sufficiently

large.

v(2-k)

(2.4) 1 - (4+e'") —T(ia—f_ EY

Yy <1 - (e Y

k

By €' we denote a small positive number depending on ¢, not necessarily the

same at all places. Also [-] denotes integral part.

Proof of Lemma 2.1: Since v(k) = Z?;; zi:-j r;, (2.1) and Theorem 1 in

T

([4), pg. 273) gives that v(k) is regularly varying with exponent o = § + 1 and

(2.5) ll%r;?%§£l +1 as k + o,

. v ok wjek
Define w, , = Zj=1 zi=j r;. Then

v(k) +
B Y,Y, = —&g
(vk)v(2))
4
(v(k)v(2))™* - (v(k) + )
(2.6) .1 - . kg
(v(k)v(L)*
v(k)v(®) - (v(k) + W o)
8 £ y
VOOV + (V) + ) (V(KV(2) D
V(LK) + 2w
Notice that v(2) = v(k) + v(&-k) + 2 Wy and define Ekl = T id)

Then the R.H.S. above is equal to

VLK) - wp /v(K)
VO + )+ wy ) (VOOV(R) )
2

v(2-k) Yok
03] {1

(2.7) 1 -

“kg

2 }(1+E)-11(1+(1+E)-!i*_—f,)'
VEV(EK) 133 ki (v(K)v(L)




AR T YA 5 < g £ 0

We need to show that the product of the last three terms in (2.7) could be

bounded above and below by ’ + €' as k +~ @, At (a), (b) and (c) below we

find bounds for various quantites involved. First we look at v(2-k)/v(k).

The argument used here is repeated several times during the rest of the text.
8

We have 0 < #-k < e'k. If (2-k) <k~ for some 0 < 6 <1 then we can write

v(2-K) < L(2-k) k*® for large k and

v(2-k) L L(2-k)
v (k) —'L(k)kail'ej

Since L(t) is slowly varying function, we know that L(t) t™Y > 0 and
L(t) t¥ »was t » o for all y >0. If k® < 2-k < €'k then by (2.2(1)),

is bounded. Thus

(a) v(2-k) [v(k) < €'

Lk opiek

j=1 ey Y0 For

for all k sufficiently large. Next, we will look at Weo = )

large k, by (2.1) we have
lu | < (const.) (2-K)2°L(D)

Hence

k16 120

'k
) TOLEK

VTETVT]:ET-i (const.)(zi

The fact that we need (%-k) sufficiently large to make the approximation

v(2-k) ~ (z-k)1+6 L(2-k) is inconsequential here, since, if (2-k) is too small

then the L.H.S. above is obviously small for k large. If (2-k) 5.ke then the




et

ST

Lemma 2.2: If & Z'k -+ o such that E-k‘i 2

R.H.S. above tends to zero as k + = by same argument as at (a) and if

(2-k) > ke then L(%)/L(&-k) is bounded by (2,2(i)) and L(R)/L(k) is always

bounded for the range of % and k under consideration. Thus

2
®) : logg | oo
viveEx) =€
. |y |
for all k sufficiently large. Obviously s s < €' as well. Finally,
(v(k)v(R)
e g |
2 2 S L
i ST £ T ) Dl

for all k sufficiently large. Substituting in (2.7) we get the result.

9 for some 6 >0 then

I Y
(2.8) ot —mki——- 5 =0

ko (v(K)V(2))2

for some y > 0.

Proof of Lemma 2.2: We can write

|Zu_1 Z _(2 ~4) % v(k) |

Iy 0-9)° Ls-5)

o |

tA

170 (A2 L) - (2-K)% L(2-K))

R

$ a (LY - LK) + okt L(2-K))

= kd LK) (1 v L(Z)LE’LES.-k) b




If &/k is bounded then we can bound the terms in the bracket above by a

constant since LK)
2/k + = however, then %- L(2)L2£%%§-k) + 0 by (2.2(ii)). Thus
o | k8L (9-K)
S < (const.) =
(vkv()* — (kl)a/z (L(k)L(!l))"i
1-68
ks 2 L{g-k)

L(&) - L&-k) ,, always bounded for -k 2_26 by (2.2(1)). . 1f

= (const.)(iﬂ i
(Lx)L(R))*

Choose 0 < y < 1%§ . Then the R.H.S. above is o((k/l)Y) as k > « because here

both L(2-k)/L(k) and L(2-k)/L(2) are bounded due to (2.2(i)) (Notice that the
case § = 1 is excluded).

We now turn to the proof of the Theorem.
First establishing

Proof of Theorem 2.1: The proof is split into two parts.

. . X -X
(2.9) lim inf P(u < B + g eaten)
n->c n

SpE P
We recall that y_ = max Y, where Y, = (v(k)) < AR
0 <k <n k k Z‘].— 1 p

The constants Bn and Xn are defined after (2.3).

for -o» < x < o,

We will split {Yi, 1 < i < n} into blocks e ter m=01,...,m

~n. We will find
0

where tm = [exp(em)] for some € > 0 and m is such that tm
a lower bound for the probability in L.H.S. of (2.9) by treating Yi in different

blocks as independent since E YkYZ will be shown to be nonnegative. Now, suppose

o
Y, was, in fact equal to 1 - %(gika . Let g(t) be a standard stationary

E Y,
Gaussian process with covariance function 1 - (% + e)|t|a for 0 <t <e. We

can sample {£(t), 0 < t < e} at points S5 where s; = 1/tm and S = Spp * 1/sk_1.

It would be easy to see that max g(sk) provides a stochastic upper bound for
k

[T S S e




e e S

10

max Y However, by using Lemma 2.1, we can get explicit bounds for

tm§k§;m+1
E Y, Y, only when (2-k) is large. Thus it is necessary to delete all but a

k &
subsequence {Y } of variables from the nth block. The proof will follow
m, h
this general outline. To start off, we also need to exclude Yl""’Y(znn)%

from consideration, since all the bounds gotten in the Lemmas work only for

large k.

For the first part of the proof, define L Bn + x/xn. Then for

W = max Y
n (2nn)%§k§p k

|Pu.<u) - P(' <u)| <P( max Yo 5 u.)
n— n n — n ! — 0<ki(£nnJ!5k n

< (anm)% ¢u ) /u_

-1
where ¢(u) = (20) & exp(—u2/2). The R.H.S. above tends to zero. Thus we can

replace M by un' in (2.3).
We will prove (2.9) with My replaced by un'. For k and £ large E YkYQ >0

since by (2.1), v(k) + 2 Wy >0 => W g > -v(k)/2 and v(k) + Weo >v(k)/2 > 0.

This, in view of (2.6) shows that E YkY2 > 0 for k and £ large. By Slepian's

—

Lemma [11],

Mo
'<u)> I P( max Y9v <u)

(2.10) P(u >
m=m, tm§ﬁ<tm+1

n

where m is such that tm v (Rnn)%.
1
The next step is to select a proper subsequence Tk from the mth block.
’

R _ ae™ - " ¥
Define tm,h = [exp(e(m“+h)®)] for h = 0,1,...,(2m+1) i.e., tm’0 & tm and

t Define Z, =Y, 6 - Y L for tm h <R f-tm

% m+l” '3 L t s 8

m, 2m+1 3




(2.11) P( max ¥, 5'u} 2 PC ‘max Y <u_ - )
t_<f<t fe="n 0<h<2m ‘m,h ~ " /2
m— m+l e
2n m
- P( max YA >'7£7' )
t <<t % m Z
m m+1

where a' < a. We will get an upperbound for the R.H.S. above by using the

following result.

Theorem: (Marcus and Shepp[6]): Let {gi, i > 1} be a sequence of jointly

Gaussian random variables with P{sup |Yi| < o} = 1. Then, letting

i>1
02 = sup var(Yi), for p>0 and all sufficiently large t, we have
i>1
2 2
(2.12) P(sup |Yi| >t) <exp{-(1 - p)t°/(207)} .

iz}

In order to apply this to Zz, we need to verify that P( max Zz <o =1,
t <<t
m—

m+1
It is sufficient to verify that max Yz is finite with probability one.
t_ <4<t
m—  m+l
By (2.4), for tm <k <f< tm+1 and m large,
]
2-k,* L(2-k) 2-k,*
- ' oAb - L ooy
(2.13) EYkYR,Zl (3§+€)(k)—m31 E(k

We write the first inequality above for the sake of convenience. For (2-k) too

small, we may not be able to write v(&-k) n (2-)% L(2-k). However, the second

inequality is correct for large k since we have chosen a' < a. The argument

for other values of (%-k) is similar to the one used before. Now, for values
-k

of k and 2 under consideration 0 f-_f— < €. By Slepian's Lemma [11],

max Yz is stochastically smaller than the maximum of an o'-process (i.e.,
t_<<t
m=" m+

1




i R S A R b T
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'
correlation near zero is 1 - (const.) ItI“ ) on the set [0,e], The later is

obviously finite with probability one. Thus from (2.12) we have

2
n m 1- n m 1
(2.14) P( max Z,> )< exp{ ~(=H ¢ s }
oy [} mot'72 2 mo;'72 0—2'
m— m+l m
23
where o = y Jﬂ: Var(z 2). But for tm,hf-ktm,hd-l’
m—""m+l
Var(zg) = V(Y - Y, )
m,h

=2(1 - E YILYt )

m,h
L=t
< 2¢! (f'—l-kh) using (2.13)
» m,h
a'
t -t
2 e ( m,h+1 m,h)

1:m,h il

-y
<e'm* for all h = 0,1,...,2n.
Hence the R.H.S. of (2.14) is at most

exp{- (const.)(2n m)z}

and the R.H.S. of (2.10) is at least

0
n m 2
NI {P(max Y <u - —7—-) - exp(-(const.)(2n m)“)}
m=m, 0<h<2m tm,h— n ma' 2
Mo
] (2.15) =B, 1 P( max y cu -&5,
: - 0<h<2m  “m,h T m

. 1 m=m 1




s b i S A B AR N i R
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m

where E = Ho {1 - exp(-(const.) (&n m)z)/ P( max Y <u ‘n m }. We
e m=m, 0<h<zm ‘m,p T M n> /2
have established before that max Y. is finite with probability 1 for all
- 0<h<2m "m,h

m. Hence P(max Y  <u - &Ef;f)'*l as n > « and

0<h<2m "m,h ~ L

© 3/2
E > exp{-(const.) [ ~Chn %) }
1

=m1

The R.H.S. above tends to one as n + ., It remains to show that the product in
R.H.S. in (2.15) is bounded below by the required limit. Now, since Y and
’

t_ . are sufficiently far apart for h # j, we can write
3

o
EYY, 21 - 05 e S &8

for values of k and % in the set N {tm,h’ h =0,1,...,2m}. Notice that for
such values of k and &, (%-k)/k cannot tend to zero very rapidly i.e.,
(!L-k)/kl-Y +® V y>0. Hence applying (2.2(ii)) we have L(2-k)/L(2) + 1.
Also, since % < (1 + €)k, L(2)/L(k) + 1 as well. By choosing an appropriate

value of €', we can write for large k that
-k, &
EY, Y, >1- (5+e)(5D)
for k,8 € T,- Let {g(t), t > 0} be standard stationary Gaussian process with
covariance function 1 - (% + €') |t|° for 0 <t < e. We see that the covariance
matrix of {Yl’ L e Tm} is bounded below by that of {Ez_t s & # Tm}. Thus
m

—

t

m
max Yt is stochastically bounded above by max Et ot which is at most
0<h<2m "m,h 0<h<2m m,h "m
g L
m
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max &(t), Thus the product in the R,H.S, of (2.15) is asymptotically at least
0<t<e

m
0
nm
(2.16) exp {- P( max E(t) >u_ - —7—)}
man ng:; " ma' 2
_ Mo 2/a-1
n m in m 1/a
v exp {- mzm e(u, - ;F17§') ¢(u, - ;51779(% * ¢f) Ha}
1

by Lemma (3.8) of Pickands [9]. Ha is defined in the statement of Theorem 2.1.

Substituting the value for u,, we have the R.H.S. of (2.16) asymptotically equal

to
"o

(2.17) exp {- IEEE 1+ 26')1/a exp(-x + 0o(1)) Z exp(un n m/ma'/z)} .
m=m,

Spliting the sum into two parts say m <m< (mo)!i and m0% <m<m), we see that
for large n
"o

7 exp(u_ gn n/
m=m, &

s oy a'/2

) f_mo exp(un) + my exp(1/(%n m) ) = mo(l + 0(1)).

Substituting in (2.17) we get that

lim inf P(u < B + X/X) > exp(-(1 + 2ty 7O 4%
n-oo
for all €' > 0. This concludes the proof of (2.9).

It is much easier to show the otherside viz,

(2.18) lim sup P(un :-Bn + */xh) f_exp(-e'x) :
n-o
We just exclude the appropriate number of Yk and then compare them with variables

selected from an appropriate a-process by Berman's Lemma [1]. Let U My and m
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g be the same as defined before. We will define new subsequences t, p and the

,h
i : sets T . To avoid clumsy notation, we will use the same symbols. Thus, it

| should be noted that tm,h and T, e defined two different ways in this section
| and two different ways in Section 3., All efforts to try to define a subsequence
that will work for both parts of the proof in each section have failed so far.
Care should be taken in noting an appropriate definition of toh and T, in

]

reading different parts of the proof. Let

h
% = [exp{e(m + )1
L (o m 2@

and

T {tm,h; 0<h<[(1-¢e)(n m)Z/a] = m say} .

(i.e., we have clipped a small portion from the right hand side for each of the

sets 'rm) . Now

Mo

(2.19) P(un iun) < P{ 2 (t max Yt . _<_un)}
m=m, m,hETm m,

) “‘(2) ';o ;z ;h u ? 1
< I P( max Y <u) +C p exp(- —) .
T m= L i =] =] = pzqh 1# P
m=m, tm,heTm m,h p>q=m; f=1 h=1 Piqh
The last inequality follows from Berman's Lemma. C is some positive constant

and

= E(Y Y. ). 48 P
(‘P,z %.h 2 s

=0 if P=gq .

pagh
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Notice also that the largest value of (1 - D;‘;Mlh)";i depends only on € and is

absorbed in C. By Lemma 2,1,

¥i%s 5" te,n

EY Y ilﬁ(lj-e')

tp,z tq,h vtfﬁ,ﬁ)
L(t -t t -t
vl - (% -€t) ( :1(: )‘bh) (_P,l q,h )a.
q,h tq’h
2

. 2
Because of the above definitions, when P # q, tp,z - tq,h 2 tq'h(ee -1)nne tq,h'

By the same reasoning as before and condition (2.2), we have

L(tp,g - tq,h)/L(tq,h) n 1. Thus

(2.20) E Yt Yt < l-¢!
P,% “q,h

for all P # q and q large. For all m, m < (&n mo)z/a. Substituting, an

upperbound for the sum in the R.H.S. of (2.19) is

mo 3 u2 mo "y u2
n a n a n
(2.21) ¢ {m.' (2n m )" “exp(- 5—) + (&n m)) "o exp(- =—)}
qzml 0 0 2-¢ P=£*(mof‘ 0 P2qh 1+pquh

for all 0 < n < 1. uﬁ N2 znzn and m, N L&g—ﬂl . We choose
n < €'/(2-¢') for the value of €' that works in (2.20). This makes the sum of
the first term in (2.21) to be o(1). For the second part of the sum, we know

by Lemma 2.2 that

vt ) % £ .Y
h q,h

EY Y < (—(JLT) + ( )
24 aa T g p, 0

for some y > 0. But v(tq,h)/v(tP,z) n (tq,h/tP,g)a for large q. Thus for some

" >a
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Y

Ppagh < (tq,n/tp, 2
< exp(-y'e mo")

for all p > q + (mo) n. Thus the sum in (2.21) is o(1). To bound the product

in the R.H.S. of (2.19), we define a standard stationary Gaussian process

{E(t), O £t< e} (different from the one in the first part of the proof) with

covariance function 1-(%-¢') Itlanear origin. We bound

/

P( max Y iun)_f_P(max gt <u)

t -t — n
tm,hETm m,h lih_<_m.h m;:h m

By Lemma (3.8) of [9], the R.H.S. above is asymptotically equal to

il
e(1l-e) (1-e") /@ Hou /% ).

Substituting in the product we get the desired result (2.18). The details of
the last argument are very much similar to those in the first part of the proof

and hence are not repeated. This finishes the proof of Theorem 2.1.

3. STRONGLY DEPENDENT CASE: In last section we considered the cases when

v(n) n“L(n) for 0 < o < 2. In this section we will have a = 2. The sequence

{Xi, i >0} and W are as described in Section 2.

Theorem 3.1: Let f be a probability density function on the real line and set

Ay = {(x,y)/-» < x < »; 0 <y <o and f(x+k) >y} .

Assume that the correlation function Ty = E)(o)(.k satisfies
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@) 1 s [ £() A £(xek)dx

(3.1)

(ii) for k z.ko, Ak n Ao [ Az n A, for 0 <k < 2.

Let - 0 be a slowly varying function such that for large k

k
(3.2) Y o =@eBkr,
i=-k
with B =0 ( 0 ) nonincreasing and 6 > 0. Then
(2n k)
Ly e -
(3.3) nf: Plu, < B + x/X) = exp(-e ")

for all -» < x < ©», Here

X, = (2 in, 1/rn)*t

and
znz 1/rn - on 41

By = Xy + 2 Ao

Condition (3.1) is used and discussed in Mittal and Ylvisaker [7]. From

discussion there, we have A

_ L,k :
Xi = (l-rk) Wi + Ik 0<i<k

where Wik and Ik are independent normal with mean zero, var(wik) =1 and

E Iklz - T v 2‘3 k. Thus

k k
2 Bt % g Ly Mg o Rlgl) |
(v(k) K wan® v

Yy




The general idea of the proof is to show that the variables Z 1 k/( (k))%

are toq small and hence we can replace the process {Yk} by {kaI(v(k))&}. (In
fact, we replace it by N = Ik/(rk)&. We deal with the new process in very much
similar ways as the last section. The following Lemma does the first part of

the proof.

Lemma 3.1: Under the conditions of Theorem 3.1,

(3.4) lim (2n k) Ty = a.s.
koo

for all § > 0 sufficiently small, where Tk = Yk - M-

Proof of Lemma 3.1: Let us define t, = [exp(kY)] for 0 <y <1 and

= A (e) = { max . > €}
5% fe,,

for € >0, k = 0,1,... . The result follows by symmetry and the use of
Borel-Cantelli Lemma if we show that Z:=1 P(k) < . To compute P(Ak)’ we find

We first note that as a

lower bound on the correlations of Cj’ tk.i )= tk+1'

result of the assumed conditions, T > 0 and for sufficiently large k, rk_i r,

Vic<k. Nowfor j< g,

e il o it

A
jr, + ). r, J(rg) £y %
5.5) E SRSy Y. 5 J J+1 _)
( % Y37 e, vo® Tt 5

But

L5 3 i

5 : 4
r; { - }vo( ——9 E > 0 for large j
P gV (v(;)ja (r;v(3))*
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and

2 4

o R L 5 %r
B ics cilamndt il L o ), -_i_g
T ¥ v(2)

vGNF- 2 r

j
V(W) ?

Iy 25

v;?(%- )

For t, < 8,j < t e £§1-§_(const.) k'(l'Y). Thus for large j, since T 2T,

P Cc
1 -
E N T e
te%y 2 Byg 2 Byl kl‘Y)

jr.
where ¢ > 0 is a constant. We know that v(Zj) = 2(1 - ) ~ E. and Ej is

nonincreasing. Hence

53t -(1-7)
E 1 > § =8 k fort, < j,L <t
e ags ! s iy
j
Now,
P(A)) = P( max N
* i<t J
%3
(3.6) <P( max S > ip )
tS<t g CV(ZJ.)) (Etk)
( p % e c 3 gﬂ
< -
=R gt L gl TR

where M; is maximum of n independent standard normal variables and U also

standard normal, independent of M;. An upperbound for the R.H.S. of (3.6) is

T




TR

e

1y , X6
+
P - k—fx 2

Y1l s 2 cll‘-‘

5

)

)+1-¢(—§-

where ¢(x) = !fw $(u)du. Noticing that tk+1'tk n exp(kY), we see that the above

is summable over k. This completes the proof of the Lemma.

1
Next, we can replace I in (3.3) by v. = max Ik/rk1 = max because
0<k<n 0<k<n
lu. - v | < max ¢
X n n! =% Ojkjp k
and
xn/(zn n)d +0 as n-+>o for all § > 0. i

For the proof of (3.3) with . in place of Uy, we follow the same proce-
dure as in Section 2. We compare {nk} with a sequence sampled from an

appropriately chosen (a=1) process. Unlike Section 2, the frequency of sampling

here depends on the covariance function {rk}. Some of the details of Section 2
become easier here in view of the observation that Ik = B(rk) where B denotes

a standardized Brownian motion. Sketch of the proof is given below avoiding H
repetition of arguments in Section 2.

Define (different from all previous definitions)

2.5
. [r'l(e'ek)] T [r-l(e-e(m +k) )1 W

k

and

T ={tm,k; 0 <k<2m}.




T ——— _
e
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Here r'l(G) = min r(t) = §. Since r is monotone, tk is nondecreasing. Also
- :
r(r'l(G)) = §. By similar arguments.that lead to (2.10) we hayve
Bo

'
(3.7) P(v <u) > mg P(t maxT n, > <u)
=y m,k'm o5

= s !i = mi
where u Bn + x/)ﬂm’ m, and m, are such that I (2n n)™ and m = -m{mltm >n}.

1
Also V! = max . Define Z, = n, - n for t <2<t . Then
m " (gn n)licken "k Sl e mk = m, k+1
P( max nziun)f_P( max n <u _lnlm)
t <<t 0<k<2m “m,k n m?
m— m+l -
- P( max Zz>f‘nm).
tm5_2<tm+1 m
But
I It
P( max 2z, >20® (2m + 1) P( max L __mk+tl o fn 23
t_ <<t % m; & t_ ., <<t e ne
m—" ‘m+l mk—" "m k+1 "% t
2 m, k+1
I -1
t
< (2m+1) {( S L z,kd & 2,n;i1n )
1:m,k-<—1z'<tm,k+1 T :
+ P( max I, (1‘;'%- r;% > ____2n!im )}
tm,k—<-9'<tm,k+1 m,k+1 m,k+1 m
fnm %
(3.8) < (2m+1) {P( max (12, - It ) > e e )
tm,ki'ktm,ka-l m,k+1 m m,k+1
-% -1 fn m
+ PU (r -T S 13«
tmk+l  ‘myk+l  tm,k w?
Since I.Q, = B(rz), we can write Iz - It ; as B(rz - T, ). Using proposition
m, k+1 m,k+1

12.20 of Brieman [2], we get the first probability in the R.H.S. of (3.8) to be

atmost
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(3.9) 2, -1, > Mm% X,
m, k m, k+1 m m, k+1
B 2,0
| ut T, v exp(-e(m+k) ). Thus
| m, k
-; var(I -1 ) =r -
,! k. Cm,kel th,k  Cm,k+l
') -.e
‘ s
i N exp(-e(m2 + k + 1)4)[e2m - 1]
!
3 Bl
2m tm,k+1
e o2 221
and (3.9) is atmost T Substituting values for T , we get
n m tm &
3

approximately the same bound for the second probability in the R.H.S. of (3.8).

Hence
22n m
P 2(2m+1) ¢ (: = )
(3.10) P( max 22 e ) <
t <<t £ = fn m
m— m+l

The R.H.S. of (3.10) is summable over m. Following the same line as in Section

2, it only remains to show that

P( max n <u)ve u ¢(u)l + ")
0<k<zm ‘mk ~ " A

(Notice that the constant Ha for a=1 is explicitly given in Theorem 4.4 of [8]).

Let {gE(t), t 3.0} be a standard stationary Gaussian process with covariance

function 1 - (% + €') |t| near origin. Then
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Y
E(n ) = (z % )
tm,k+.¢ ntm.k tm,k+2, tm,k
" exp {%((m2 + k + J't,)!i - (m2 + k)k)
e (1+e)e &
2
4(m“+k)
el
2l-0Gs+e ) (7
siEE: . k)
mL m
tm
It follows in the manner similar to Section 2 that
(3.11) lim P(un_i Bn + x/xn)_z exp(-e'x).

n>co

(It should be noted that r N exp(-emo) 2 e'ern. Strictly speaking, the

0
normalized constants for the £ process should be with T, replaced by T, but
m
0
it is easy to see that this does not make any difference in the limit.)

tm

The procedure for the rest of the proof is now apparent. We define a new

t o= [ fexpl-etm + —E— 0} .

m,k (2n m)

The fact that pquh = E ntP,l ntq,h decreases rapidly to zero for p-q 2m, is
quite obvious. The rest of the arguments are very similar and hence not

repeated.

4, EXAMPLES AND DISCUSSION: Examples of covariance functions {rk} satisfying

(2.1) and (2.2) are given by convex {rk}, T, = k‘Y(Zn k)z for k z_ko, 0<yc<l1

and £ ¢ R. (Defined appropriately on [O,ko] to make it convex). For {rk}




satisfying (3.1) and (3.2), we give again convex {rk}, T = (&n k)'z for

k >k, and £ > 0.

0

The proof of the result &t P(vh E-sn + x/xn) = exp(-e'x) can be greatly
reduced by the observation Ik7;:% = B(rk)/rk% and the result of Darling and
Erdds [3] as given in (3.1) of Robbins and Siegmund [10]. Darling and Erdos
do not state their result in the form (3.1) of [10]. Also their proof of

Theorem 1 in [3] is quite complicated. Theorem 1 of [3] is a particular case

of Theorem 2.1 and the last part of Theorem 3.1 offers an alternative proof for

(3.1) of [10].
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